

Machine Learning benchmarking with OpenStack and Kubernetes

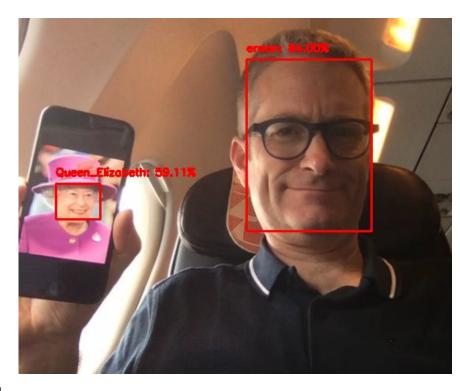
Choose the right ML infrastructure

Erwan Gallen Product Manager Cloud Platforms

About your presenter

Erwan Gallen IRC: egallen Twitter: @egallen <u>https://egallen.com</u> <u>https://erwan.com</u>

Product Manager @ Red Hat Cloud Platforms Business Unit Hybrid Cloud Computing and Al


Agenda

- Why you need benchmarking for Machine Learning?
- MLPerf, "SPEC for Machine Learning"
- How to benchmark your OpenStack and Kubernetes ML full stack:
 - OpenStack and OpenShift prerequisites
 - Simple TensorFlow Benchmark
 - Thoth knowledge base

Machine Learning benchmarking with OpenStack and Kubernetes

Face recognition

내 中国移动 🗢	<mark>⊘</mark> 18:08	73	🔊 32 % 🛃			
	🔒 fanyi.baidu.c	om	Û			
	百度翻译	2	≣			
英语	- -	中文・				
hello ever	ryone		×			
小) ○ 英 [he	əˈləʊ ˈevriwʌn]					
♫) ⑨ 美[ha	əʻloʊˈevriwʌn]					
大家好						
\square »)			F			

Fraud detection

Self Driving Car

Recommendation engine

Frequently bought together

This item: Optimizing Compilers for Modern Architectures: A Dependence-based Approach by Randy Allen Harkover \$138.00 Engineering: A Compiler by Kelth Cooper Hardcover \$80.95

Compliers Principles Techniques and Tools (2nd Edition) by Alford V Also Havingers \$181.26

Customers who bought this item also bought

Andrew W. Aque

Paperback 573.51 vorime

Compilers: Principle Quantitative Approach Edition Alfred V. Alto Hardcover \$181.26 yprime

(The Morgan Kaufmann, John L. Henness ******* Faperback \$70,08 - prime Hardcover \$37,79

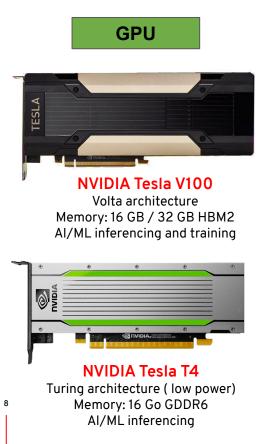
Computation and Machin Learning series) Michael McCool Paperback \$50.35 - prime

vogramming: Patt Efficient Computation > John R. Levine

torgan Kaufmann Serie in Software Engineering. Computing Nichael Wolfe ★★★★☆6

ingineering Acoroac *****

ompilers for Para Paperback \$114.97 vprime



7

Hardware accelerators for Data Center AI/ML

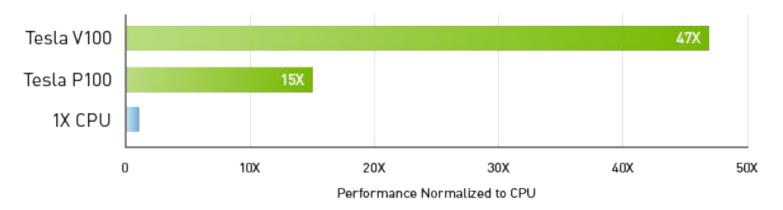
Intel FPGA PAC D5005 Intel Intel Stratix 10 Memory: 32 GB DDR4 AI/ML inferencing

Xilinx Alveo U50 DC Accelerator

UltraScale+ XCU50 (low power) Memory: 8 GB HBM2 Al/ML inferencing

VPU Intel Myriad X (x8 Al/ML inferencing

Historical break: explosion of software and hardware solutions


NVIDIA is leading Deep Learning computing

- CUDA cores
- Tensor Cores (Mixed precision Matrix math support)
- Access via frameworks and libraries (cuDNN, cuBlas, TensorRT) and C++
- NVLink/NVSwitch:
 - High speed connecting between GPUs for distributed algorithms
- Integrated Software Stack:
 - Driver: hardware certification, pre-built packages, and testing
 - Platform integration: OpenStack + vComputeServer,
 OpenShift + NVIDIA k8s-device-plugin

GPU versus CPU performance

47X Higher Throughput Than CPU Server on Deep Learning Inference

Workload: ResNet-50 | CPU: 1X Xeon E5-2690v4 @ 2.6 GHz | GPU: Add 1X Tesla P100 or V100

Machine Learning benchmarking with OpenStack and Kubernetes

GPU accelerated servers

NVIDIA DGX-2 (16 x V100 + NVSwitch)

NVIDIA DGX-1 (8 x V100 + NVLink)

Dell EMC PowerEdge R940xa (8 x V100)

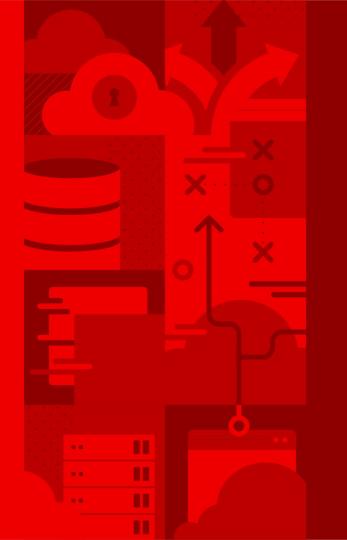
Dell EMC PowerEdge R740xd (3 x V100)

Supermicro SYS-4029GP-TVRT (8 x V100)

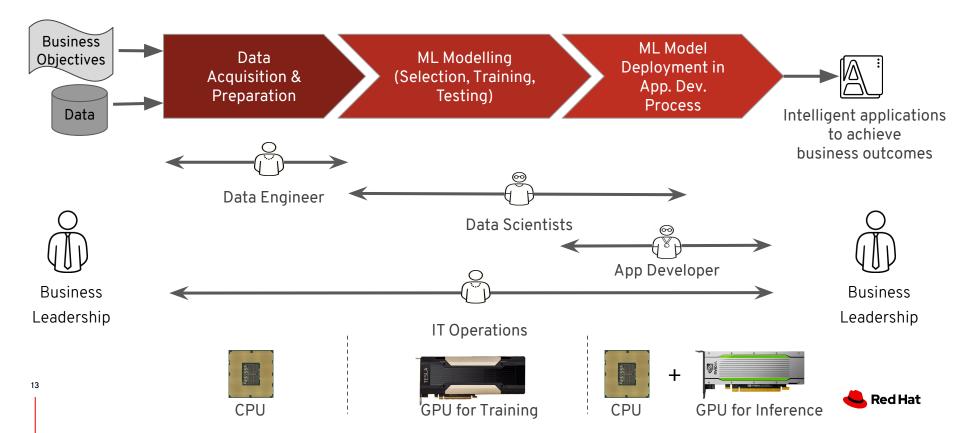
HPE Apollo 6500 Gen10 (8 x V100)

HPE ProLiant DL380 Gen10 (3 x V100)

IBM Power System AC922 (6 x V100)



NVIDIA Tesla Qualified servers: https://www.nvidia.com/en-us/data-center/tesla/tesla-qualified-servers-catalog/


CONFIDENTIAL Designator

Machine Learning Benchmarking

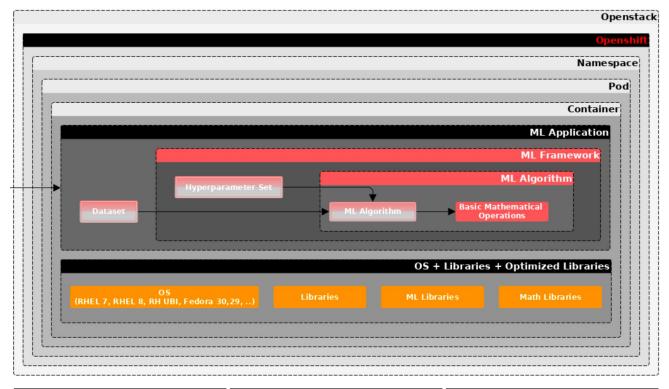
Machine Learning Pipeline & Key Personas

Machine Learning benchmarking

Machine learning training presents a number of unique challenges to benchmark:

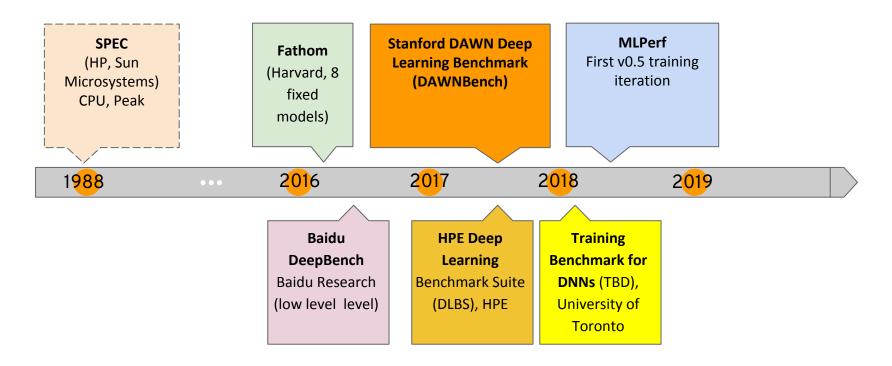
- Some optimizations that improve training throughput actually increase time to solution
- Time to solution has high variance
- The software and hardware systems are so diverse that they cannot be fairly benchmarked with the same binary, code, or even hyperparameters.

Needs industry-standard performance benchmarks to drive design and enable competitive evaluation.


Source: Peter Mattson, arXiv:1910.01500v2 [cs.LG] 30 Oct 2019

14

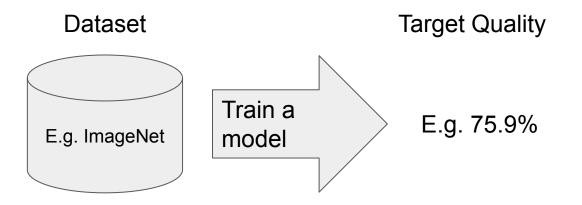
CPU


Performance of the full Machine Learning stack

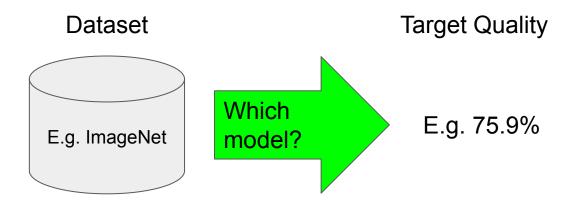
FPGA

Deep Learning Benchmark history

Source: https://www.anandtech.com/show/12673/titan-v-deep-learning-deep-dive/5



MLPerf


MLPerf training, do we specify the model?

The goal of training in machine learning is to create a model that generalizes well to unseen data according to a given quality metric (e.g., accuracy).

MLPerf training, do we specify the model?

Choice: two divisions for Training

- Closed division:
 - Model is specified
 - Fixed model parameters
 - Fixed data format

- Open division:
 - Model is not specified
 - Encourage innovations
 - Tricks and model adjustement welcomed

High Level: MLPerf

General MLPerf goals since 2018:

- Accelerate progress in ML via fair and useful measurement
- Serve both the commercial and research communities
- Enable fair comparison of competing systems yet encourage innovation to improve the state-of-the-art of ML
- Enforce replicability to ensure reliable results
- Keep benchmarking effort affordable so all can participate

MLPerf Training

MLPerf training benchmark suite measures how fast a system can train ML models. V0.6 results published 2019, July 10th

MLPerf Inference

MLPerf inference benchmark measures how fast a system can perform ML inference using a trained model. V0.5 coming soon: 2019 mid November

High Level: MLPerf

Name: <u>MLPerf</u>

Founders: collaboration of <u>companies</u> and <u>researchers from educational institutions</u>. Created: February 2018 Version: 0.6.0

Goal:

Measure system performance for both training and inference from mobile devices to cloud services. MLPerf can help people choose the right ML infrastructure for their applications

Metrics:

- wall clock time to train a model to a target quality (based on original publication result, less a small delta to allow for run-to-run variance);
- power (a useful proxy for cost)
- cloud cost

Schedule of submission rounds

Past and future submission schedule:

Submission round	Submission date	Results public			
Training v0.5		2018, December 12nd			
Training v0.6		2019, July 10th			
Inference v0.5	2019, October 11st	2019, November 6th			
Training v0.7	2020, February 21st [tentative]				
Inference v0.7 (v0.6)	2020, May [tentative]				
Training v0.8	2020, August [tentative]				
Inference v0.8	2020, November [tentative]				

MLPerf governance

The MLCommons mission is to **accelerate ML innovation** and increase its positive impact on society by creating public resources and supporting outreach activities.

More than 40 companies and 800 members involved.

Plan to create an **MLCommons** Foundation to host MLPerf

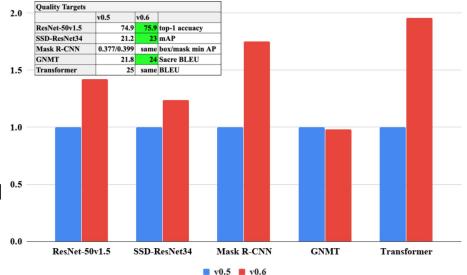
Zurich foundation

Target launch in February 2020

Membership will be required for many MLPerf activities Become a founding member now and help set the direction

24

MLPerf choices for v0.6


- Mix of importance, availability of data, and readiness of code.
- Cutting but not bleeding edge models.
- Compare to v0.5, quality targets raised

Area	Problem	Dataset	Model			
Vision	Image recognition	ImageNet	ResNet-50			
	Object detection, light-weight	COCO	SSD w/Resnet34			
	Object detection, heavy-weight	COCO	Mask R CNN			
Language	Translation	WMT EngGerman	NMT			
	Translation	WMT EngGerman	Transformer			
Commerce	Recommendation	Movielens-20M	NCF			
Reinforcement Learning	Go	Pro games	Mini go			

Red Hat

Agile benchmark development

- Rapidly iterate the benchmark suite:
 - Remain relevant in the very fast moving ML field
 - Correct inevitable mistakes in the formulation
 - Scale problems to match faster hardware
- Like SPEC, have quarterly deadlines and then publish results for that quarter via searchable database

Red Hat

From MLPerf Training v0.5 to v0.6, Quality targets raised: Image classification (ResNet-50) to 75.9% Single Shot Detector (light-weight Object Detection) to 23% Google Neural Machine Translation (GNMT) to 24 Sacre BLEU.

MLPerf Training v0.6 Results

MLPerf Training v0.6 Results

July 10th, 2019

ဖု

https://mlperf.org/training-results-0

Any use of the MLPerf results and site must comply with the MLPerf Terms of Use.

You may wish to read the Training Overview to better understand the results.

To see the earlier MLPerf Training v0.5 results go here.

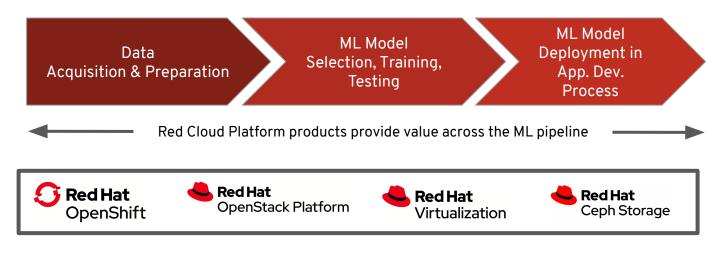
Closed Division Times

Open Division Times

Close	d Divisi	on Times				_											
				1				Benchmark results (minutes)									
									Object detection, light- weight	Object detection, heavy-wt.	Translation , recurrent	Translation , non-recur.	mendation	Reinforce- ment Learning			
								ImageNet	сосо	сосо	WMT E-G	WMT E-G	MovieLens- 20M	Go			
									SSD w/	Mask-	WWIT L-G	WWIT L-G	2011	00			
#	Submitter	System	Processor	#	Accelerator	#	Software	v1.5		R-CNN	NMT	Transformer	NCF	Mini Go	Details	Code	Notes
Availab	le in cloud																
0.6-1	Google	TPUv3.32			TPUv3	16	TensorFlow, TPU 1.14.1.dev	42.19	12.61	107.03	12.25	10.20	[1]		details	code	none
0.6-2	Google	TPUv3.128			TPUv3	64	TensorFlow, TPU 1.14.1.dev	11.22	3.89	57.46	4.62	3.85	[1]		details	code	none
0.6-3	Google	TPUv3.256			TPUv3	128	TensorFlow, TPU 1.14.1.dev	6.86	2.76	35.60	3.53	2.81	[1]		details	code	none
0.6-4	Google	TPUv3.512			TPUv3		TensorFlow, TPU 1.14.1.dev				2.51	1.58	[1]		details	code	none
0.6-5	Google	TPUv3.1024			TPUv3	512	TensorFlow, TPU 1.14.1.dev	2.27	1.34		2.11	1.05	[1]		details	code	none
0.6-6	Google	TPUv3.2048			TPUv3	1024	TensorFlow, TPU 1.14.1.dev	1.28	1.21			0.85	[1]		details	<u>code</u>	none
Availab	le on-prem	se															
0.6-7	Intel	32x 2S CLX 8260L	CLX 8260L	64			TensorFlow						[1]	14.43	details	<u>code</u>	none
0.6-8	NVIDIA	DGX-1			Tesla V100		MXNet, NGC19.05	115.22					[1]		details	<u>code</u>	none
0.6-9	NVIDIA	DGX-1			Tesla V100		PyTorch, NGC19.05		22.36	207.48	20.55	20.34	[1]		details	<u>code</u>	none
0.6-10	NVIDIA	DGX-1			Tesla V100	-	TensorFlow, NGC19.05						[1]		details	code	none
0.6-11	NVIDIA	3x DGX-1			Tesla V100		TensorFlow, NGC19.05						[1]	13.57	details	code	none
		24x DGX-1			Tesla V100		PyTorch, NGC19.05			22.03			[1]		details	<u>code</u>	none
	NVIDIA	30x DGX-1			Tesla V100		PyTorch, NGC19.05		2.67				[1]		details	code	none
	NVIDIA	48x DGX-1			Tesla V100		PyTorch, NGC19.05				1.99	-	[1]		details	<u>code</u>	none
0.6-15	NVIDIA	60x DGX-1			Tesla V100		PyTorch, NGC19.05					2.05	[1]		details	<u>code</u>	none
	NVIDIA	130x DGX-1	-		Tesla V100		MXNet, NGC19.05	1.69					[1]		details	code	none
0.6-17	NVIDIA	DGX-2			Tesla V100		MXNet, NGC19.05	57.87					[1]		details	<u>code</u>	none
0.6-18	NVIDIA	DGX-2			Tesla V100		PyTorch, NGC19.05		12.21	101.00	10.94	11.04	[1]		details	code	none
	NVIDIA	DGX-2H			Tesla V100	_	MXNet, NGC19.05	52.74					[1]		details	code	none
	NVIDIA	DGX-2H			Tesla V100	_	PyTorch, NGC19.05		11.41			9.80	[1]		details	code	none
0.6-21	NVIDIA	4x DGX-2H			Tesla V100	64	PyTorch, NGC19.05		4.78	32.72			[1]		details	code	none

Source: https://mlperf.org/training-results-0-6

MLPerf records at Scale and per accelerator

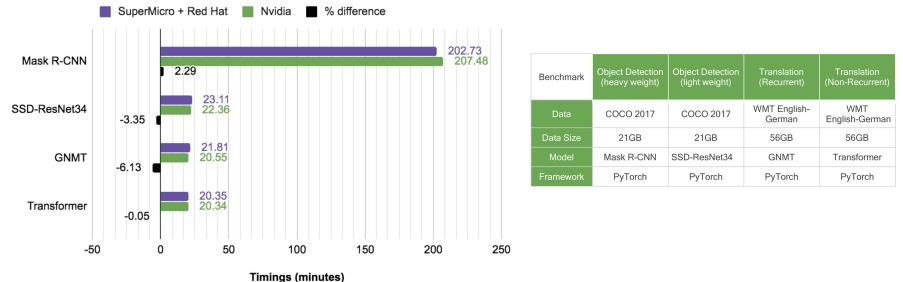

Record Type	Benchmark	Record			
	Object Detection (Heavy Weight) - Mask R-CNN	18.47 Mins			
Max Scale (minutes To Train)	Translation (Recurrent) - GNMT	1.8 Mins			
	Reinforcement Learning - MiniGo	13.57 Mins			
	Object Detection (Heavy Weight) - Mask R-CNN	25.39 Hrs			
	Object Detection (Light Weight) - SSD	3.04 Hrs			
Per Accelerator (hours To Train)	Translation (Recurrent) - GNMT	2.63 Hrs			
	Translation (Non-recurrent) - Transformer	2.61 Hrs			
	Reinforcement Learning - MiniGo	3.65 Hrs			

27 Per Accelerator comparison using reported performance for MLPerf 0.6 NVIDIA DGX-2H (16 V100s) compared to other submissions at same scale except for MiniGo where NVIDIA DGX-1 (8 V100s) submission was used MLPerf ID Max Scale: Mask R-CNN: 0.6-23, GNMT: 0.6-26, MiniGo: 0.6-11 | MLPerf ID Per Accelerator: Mask R-CNN, SSD, GNMT, Transformer: all use 0.6-20, MiniGo: 0.6-10

The Open Data Hub Project

- Open community: <u>https://opendatahub.io</u>
- Al end-to-end platform, Meta-Project that integrates best of open source Al projects
- Reference Architecture for OpenShift
- Red Hat's internal Data Science and Al platform
- OpenShift 3.11 or 4+, based on operator
- GPU performance benchmarks with MLPerf

Red Hat and SuperMicro MLperf Training v0.6

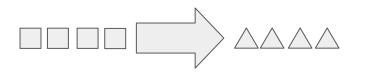

Supermicro GPU Server SYS-4029GP-TVRT 8 x Tesla V100 / server

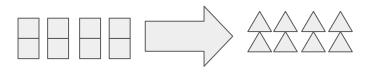
29

Red Hat and SuperMicro MLperf Training v0.6

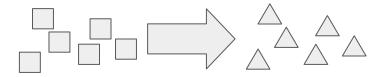
Benchmark results showing that MLPerf v0.6 on OpenShift was faster than the NVIDIA published timing for Mask R-CNN and only .05 to 6.13% slower for SDD-ResNet34, GMNT and Transformer.

Red Hat


30


Dell MLPerf NVIDIA V100 with NVIDIA T4

Inference metric: one metric for each scenario



Single stream e.g. cell phone augmented vision

Multiple stream e.g. multiple camera driving assistance Latency

Number streams subject to latency bound

32

QPS

subject to latency bound

Throughput

Offline e.g. photo sorting Machine Learning benchmarking with OpenStack

Inference scenarios

Scenar	io Query generation	Inferences per query	Latency constraint (ms)	Tail latency	Metric
Single stream	The LoadGen sends the next query as soon as the SUT completes the previous one	1	None	90%	90th percentile measured latency
<i>Multiple</i> stream	The LoadGen sends a new query every Latency Constraint, if the SUT has completed the prior query. Otherwise, the new query is dropped. Such an event is one overtime query.	Variable, see metric	Benchmark specific based on typical use	90%	Maximum number of inferences per query supported
Server	The LoadGen sends new queries to the SUT according to a Poisson distribution.	1	Benchmark specific based on typical use	90%	Maximum Poisson throughput parameter supported
Offline	The LoadGen sends all queries to the SUT at one time.	All	None	N/A	Measured throughput

Inference Models v0.5

Area	Task	Model	Dataset
Vision	Image classification	Resnet50-v1.5	ImageNet (224x224)
Vision	Image classification	MobileNets-v1 224	ImageNet (224x224)
Vision	Object detection	SSD-ResNet34	COCO (1200x1200)
Vision	Object detection	SSD-MobileNets-v1	COCO (300x300)
Language	Machine translation	GNMT	WMT16

Inference submitters

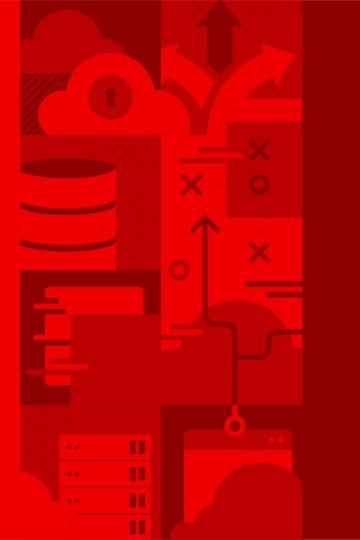
Alibaba AMD Centaur Dell dividiti Facebook FCCL-FAI **FuriosaAI** Google Habana Hailo Inspur Intel

MediaTek Microsoft ModelScope Nvidia PQLabs Qualcomm Samsung SuperMicro Tencent Xilinx

Running the inference reference benchmark app

\$./run_local.sh resnet50 gpu

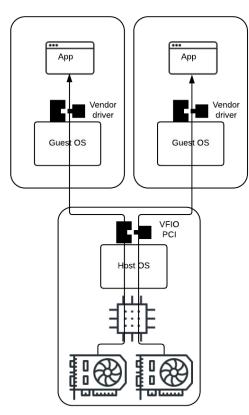
TestScenario.SingleStream qps=163.51, mean=0.0061, time=60.040, queries=9817, tiles=50.0:0.0059,80.0:0.0063,90.0:0.0066,95.0:0.0070,99.0:0.0083,99.9:0.0108


\$./run_local.sh resnet50 cpu

TestScenario.SingleStream qps=10.18, mean=0.0981, time=100.568, queries=1024, tiles=50.0:0.0961,80.0:0.1045,90.0:0.1076,95.0:0.1114,99.0:0.1275,99.9:0.1395

\$./run_local.sh mobilenet cpu

```
Accuracy qps=48.12, mean=0.019353, acc=87.50, queries=8,
t=80:0.0198,90:0.0278,95:0.0366,99:0.0436,99.9:0.0451
INFO:main:starting TestScenario.SingleStream
TestScenario.SingleStream qps=67.94, mean=0.014653, queries=683,
t=80:0.0154,90:0.0173,95:0.0191,99:0.0256,99.9:0.0627
```

37

OpenStack and Kubernetes prerequisites

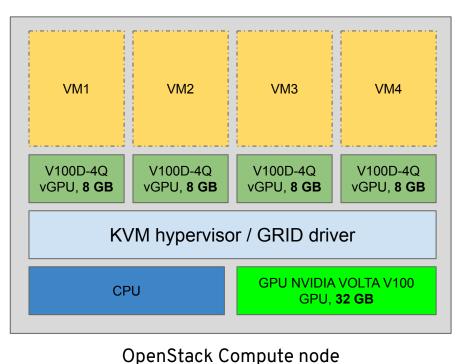
Exposing GPUs to virtual machines with PCI Passthrough

- 1-1 MAPPING OF HOST DEVICE TO GUEST
- IMPLEMENTED IN QEMU AS HOST DEVICE

Implemented in upstream OpenStack since Havana Supported by Red Hat OpenStack Platform

PROS:

- Full compatibility on the guest
- Maximum performance on the guest

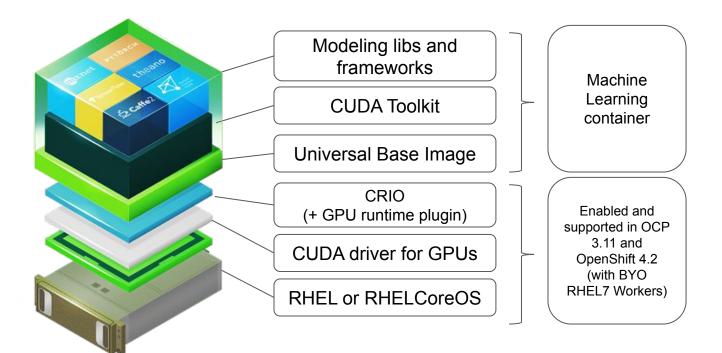

CAVEATS:

- Device exposure to the guest
- PCI-E lanes limitations per CPU
- Capacity management challenges

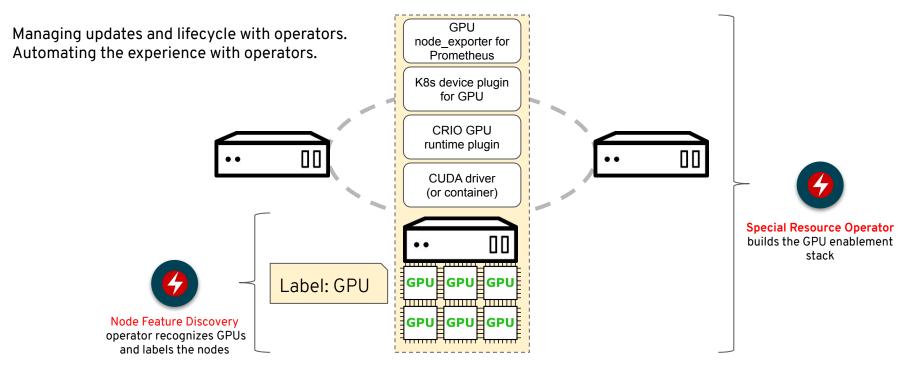
Artificial Intelligence with RHOCP & RHOSP

NVIDIA vGPU with GRID driver

Caffe2O PyTorch ---Virtual Machine NVIDIA guest driver vGPU -NVIDIA GRID driver KVM Hypervisor NVIDIA Tesla GPU RHOSP Compute server


TensorFlow

Source: <u>NVIDIA software documentation</u>



Enable GPUs with OpenShift

Enable GPUs with OpenShift

GPU supported in OpenShift 3.11 and OpenShift 4.2 with RHEL7 only on GPU nodes; NFD and GPU operator are in roadmap

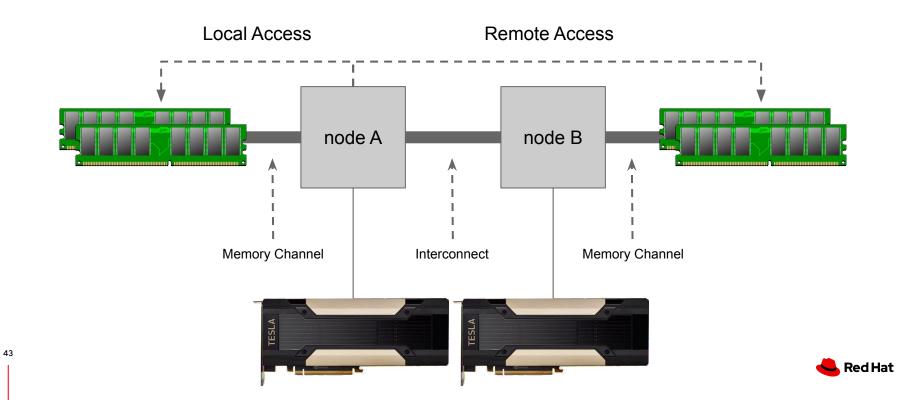
Machine Learning benchmarking with OpenStack and Kubernetes

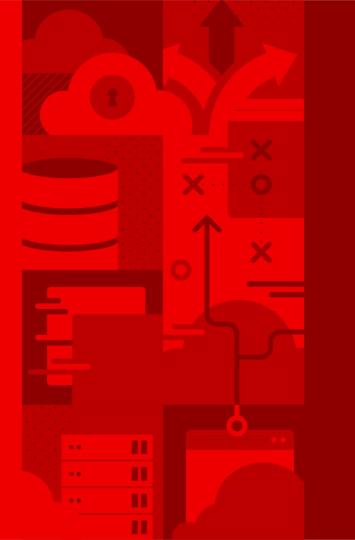
OpenShift on OpenStack

DpenShift

ړ	(overcloud) [stack@perflab-director ~]\$ oc get nodes				
_	NAME	STATUS	ROLES	AGE	VERSION
	perflab-x7szb-master-0	Ready	master	8d	v1.14.6+c07e432da
)	perflab-x7szb-master-1	Ready	master	8d	v1.14.6+c07e432da
	perflab-x7szb-master-2	Ready	master	8d	v1.14.6+c07e432da
ر	perflab-x7szb-worker-2jqns	Ready	worker	8d	v1.14.6+c07e432da
2	perflab-x7szb-worker-7gk2p	Ready	worker	8d	v1.14.6+c07e432da
	perflab-x7szb-worker-gpu-rrstz	Ready	worker	6d14h	v1.14.6+c07e432da
-	perflab-x7szb-worker-v6xwp	Ready	worker	8d	v1.14.6+c07e432da

(overcloud) [stack@perflab-director ~]\$ openstack server list -c Name -c Status -c Image -c Flavor


DpenStack


NameStatusImageFlavorperflab-x7szb-worker-gpu-rrstzACTIVErhcosm1-gpu.largeperflab-x7szb-worker-2jqnsACTIVErhcosm1.largeperflab-x7szb-worker-7gk2pACTIVErhcosm1.largeperflab-x7szb-worker-v6xwpACTIVErhcosm1.largeperflab-x7szb-worker-v6xwpACTIVErhcosm1.largeperflab-x7szb-master-0ACTIVErhcosm1.largeperflab-x7szb-master-2ACTIVErhcosm1.large		±	L	L
perflab-x7szb-worker-2jqns ACTIVE rhcos m1.large perflab-x7szb-worker-7gk2p ACTIVE rhcos m1.large perflab-x7szb-worker-v6xwp ACTIVE rhcos m1.large perflab-x7szb-master-0 ACTIVE rhcos m1.large perflab-x7szb-master-2 ACTIVE rhcos m1.large	Name	Status	Image	Flavor
pertiad-x/szd-master-1 ACTIVE rhcos mi.iarge	perflab-x7szb-worker-2jqns perflab-x7szb-worker-7gk2p perflab-x7szb-worker-v6xwp perflab-x7szb-master-0	ACTIVE ACTIVE ACTIVE ACTIVE	rhcos rhcos rhcos rhcos	m1.large m1.large m1.large m1.large

42

Take care of NUMA affinity

TensorFlow Benchmark

TensorFlow Benchmark

https://github.com/tensorflow/benchmarks

45

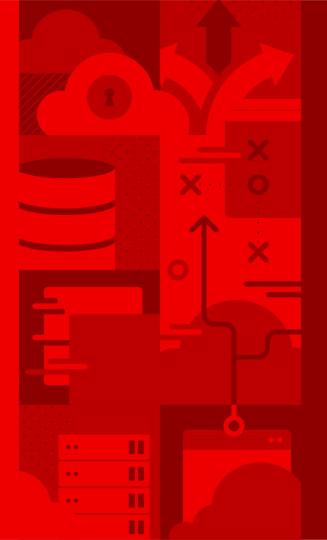
```
$ cat << EOF > tensorflow-benchmarks-gpu.yaml
apiVersion: v1
kind: Pod
metadata:
 name: tensorflow-benchmarks-gpu
spec:
 containers:
 - image: nvcr.io/nvidia/tensorflow:19.09-py3
   name: cudnn
   command: ["/bin/sh","-c"]
   args: ["git clone https://github.com/tensorflow/benchmarks.git;cd
benchmarks/scripts/tf cnn benchmarks;python3 tf cnn benchmarks.py
--num gpus=1 --data format=NHWC --batch size=32 --model=resnet50
--variable update=parameter server"]
   resources:
    limits:
      nvidia.com/gpu: 1
    requests:
      nvidia.com/gpu: 1
 restartPolicy: Never
EOF
```

\$ oc create -f

tensorflow-benchmarks-gpu.yaml
pod/tensorflow-benchmarks-gpu created

- Simple quick jobs
- Optional training dataset
- Can be added in the monitoring

\$ oc logs tensorflow-benchmarks-cpu Step Img/sec total loss 1 images/sec: 2.2 +/- 0.0 (jitter = 0.0) 8.108 images/sec: 2.2 +/- 0.0 (jitter = 0.0) 8.122 10 20 images/sec: 2.2 +/- 0.0 (jitter = 0.0) 7.983 . . . total images/sec: 2.24 \$ oc logs tensorflow-benchmarks-gpu Step total_loss Img/sec 1 images/sec: 327.4 +/- 0.0 (jitter = 0.0) 8.108 10 images/sec: 326.5 +/- 0.7 (jitter = 1.0) 8.122 20 images/sec: 327.2 +/- 0.4 (jitter = 0.6) 7.983 . . . total images/sec: 325.03


TensorFlow:	1.14
Model:	resnet50
Dataset:	imagenet
Mode:	training
Accelerator:	GPU
Adaptor:	1 x V100

46

GPU

CPU

47

Thoth

CONFIDENTIAL Designator

📥 Red Hat

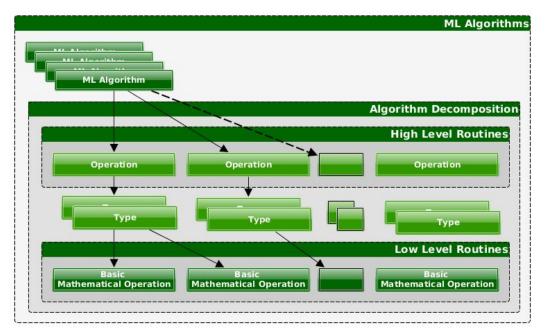
Combinations of TensorFlow and Flask 59 * 28 = 1,652 + Flask dependencies (click, itsdangerous, jinja2, ...) = 54,395,000 + TensorFlow dependencies = 139,740,802,927,165,440,000

Thoth

- Open source project
- Latest versions are not always greatest choices.
- Create knowledge base
 - What packages in which versions should I use?
 - Application builds correctly
 - Application runs correctly
 - Application behaves and performs well
- Create an advanced Python resolver which uses knowledge base to resolve software stacks

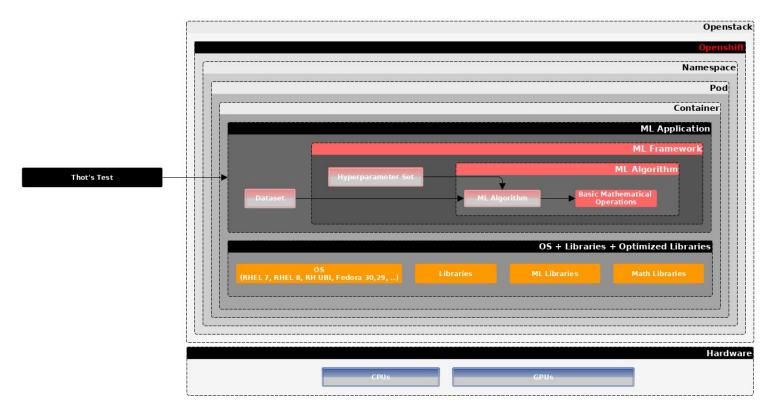
\$ pip3 install thamos
\$ cd ~/repositories/my-repo/
\$ thamos config
\$ thamos advise

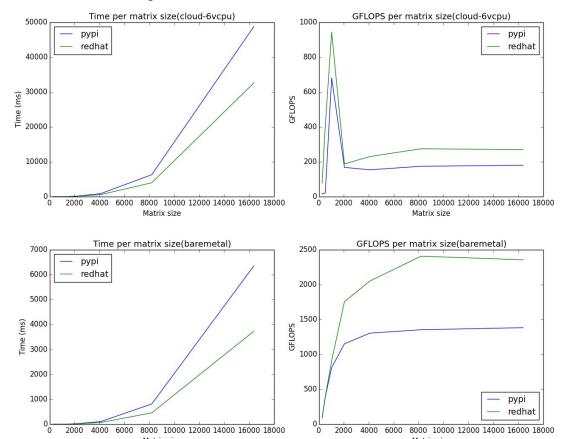
Thoth PI


	Benchmark (High Level Test)	Thoth Pl	Micro-benchmark (Low Level Test)
Goal	Measure system performance for both training and inference from mobile devices to cloud services.	Evaluate Performance Indicators that can be used to recommend Al software stacks.	Benchmark operations that are important to deep learning on different hardware platforms.
Metrics	TimeFLOPSCost	TimeFLOPS	TimeFLOPS
Time requested for benchmarking	~hours, days	~minutes, (hours)	~seconds, minutes
Using ML Yes Frameworks		Yes	No
Phase of ML workflow	Training/Inference	Training/Inference	Training/Inference

50

Thoth PI


Algorithm decomposition


Source: Machine Learning Frameworks Overview, Example Applications, and Test Patterns

Thoth PI

53

TensorFlow optimized

Key takeaways

- Benchmark your full Machine Learning stack
- NVIDIA with GPU hardware and software libraries is leading Deep Learning computing
- MLPerf is an agile industry standard
- CPU may be enough for simple inferencing on small datasets
- Take care of the NUMA affinity of your OpenStack compute nodes
- Use GPU certified servers and tested drivers for Kubernetes
- Compare with others with MLPerf
- Create quick benchmarks that can be added in your monitoring
- Drivers and libraries latest versions are not always the greatest choices
- Create your benchmarking knowledge base

Thank You

